

Designing a Conversational Interface
for a Multimodal Smartphone
Programming-by-Demonstration Agent

Abstract
In this position paper, we first summarize our work on
designing the conversational interface for SUGILITE – a
multimodal programming by demonstration system that
enables a virtual agent to learn how to handle out-of-
domain commands and perform the tasks using
available third-party mobile apps in task-oriented
dialogs from the user’s demonstrations. We then
discuss our planned future work on enabling the end
users to create more useful and usable automations for
the virtual agent by supporting the users to verbally
describe interface operations, to narrate ambiguous
steps during demonstrations, and to specify
conditionals, triggers, parameters and error handling
behaviors through a conversational interface.

Author Keywords
Multimodal interaction; conversational interface;
programming by demonstration; end user programming

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces: Interaction styles.

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author. Copyright is held by the
owner/author(s).

Conversational UX Design CHI 2017 Workshop, May 6, 2017,
Denver, CO, USA.

Toby Jia-Jun Li
Carnegie Mellon University
Pittsburgh, PA
tobyli@cs.cmu.edu

Brad A. Myers
Carnegie Mellon University
Pittsburgh, PA
bam@cs.cmu.edu

Amos Azaria
Computer Science Department
Ariel University, Israel
amos.azaria@ariel.ac.il

Igor Labutov
Carnegie Mellon University
Pittsburgh, PA
ilabutov@cs.cmu.edu

Alexander I. Rudnicky
Carnegie Mellon University
Pittsburgh, PA
air@cs.cmu.edu

Tom M. Mitchell
Carnegie Mellon University
Pittsburgh, PA
tom.mitchell@cs.cmu.edu

Introduction
Existing conversational intelligent agents like Siri,
Google Assistant, Alexa and Cortana can perform
various tasks, including device control, communication,
web search and calendar management. However, these
agents have limited functionality. They can only invoke
built-in apps (e.g., Phone, Calendar, Music, etc.) and a
few integrated external apps and web services (e.g.,
Search, Weather, Wikipedia) and cannot perform the
tasks if the user gives a command that requires the use
of an unsupported third-party service. In the
conversational user experience with the current agents,
for a user utterance that does not match any of the
system’s known types, the agents often simply give an
error response (e.g., “I can’t do that”, “I don’t
understand that”) or perform a general web search for
the user’s command, which is not very helpful.

To address this limitation, we are designing and
implementing SUGILITE [3], a multimodal programming
by demonstration (PBD) system that enables end users
to program arbitrary smartphone tasks by combining
the demonstrations made by directly manipulating the
regular graphical user interface (GUI) of smartphone
apps, along with verbal instructions from the users.

With SUGILITE, an intelligent agent can learn how to
handle out-of-domain commands and perform the tasks
using available third-party mobile apps in task-oriented
dialogs from the user’s demonstrations. More details
about SUGILITE can be found in another paper [3]. In
this position paper, we particularly focus on the design
of its conversational interface.

The Conversational Interface of SUGILITE
In this section, we will briefly describe the
conversational interface [1] of SUGILITE, and how
SUGILITE uses the users’ verbal instructions in
generalizing the scripts. This generalization mechanism
allows SUGILITE to learn how to perform tasks with
different values for parameters (e.g., to order any
Starbucks drink, or to find flights between any pair of
cities) from a single demonstration. To better exhibit
this interface, a video is also available1.

To provide flexibility for users in different contexts,
both creating the automation and running the
automation can be performed through either the
conversational interface or SUGILITE’s own GUI. Sugilite
currently uses Google ASR for voice recognition, and
has its conversational interface based on LIA [1]. When
the user gives a new voice command (e.g., “order a
cup of cappuccino”, “check the score of the Steelers
game”), SUGILITE replies “Sorry, but I don’t
understand… Would you like to teach me?” (Figure 1).

After the user answers “Yes” in the conversational
interface, SUGILITE replies “When you say [COMMAND]
… What shall I do? … Show me how to [COMMAND]”,
switches to the home screen of the phone, and shows a
popup to prompt the user to start demonstrating. As
each step is demonstrated, SUGILITE pops up a
confirmation (Figure 2). After the user finishes the
demonstration, SUGILITE attempts to generalize the
script by comparing the features of the target UI
elements (in particular, their text labels) and any
values typed into text fields against the words in the
verbal command, trying to identify the user’s
parameters by matching the strings.

Figure 1: The conversational
interface of SUGILITE, showing the

conversation between the user and
the virtual agent on demonstrating
a new task “order a cappuccino”

1Video Link:
https://www.youtube.com/
watch?v=IocwhPwy5N4

For example, after the user demonstrates what to do
for the command “Order a pepperoni pizza” using the
Papa John’s app, SUGILITE notices that the operation of
clicking on the menu item “Pepperoni” from the “Papa’s
Picks” menu matches the word “pepperoni” in the
verbal command (Figure 3). So SUGILITE can infer that
“pepperoni” might be a parameter in this script, and
“sausage” and “cheese pizza” are the two other
possible values for this slot. As a result, SUGILITE learns
how to properly handle the generalized command
“Order a [PIZZA_TYPE] pizza” and can automatically
order the right pizza based on the parameter given in
the user’s command.

In order to support this generalization, SUGILITE records
the set of all possible alternatives to the UI element on
which the user operates. SUGILITE finds these
alternatives based on the UI structure, looking for other
elements that are structurally in parallel with the
selected element. This mechanism also allows SUGILITE
to differentiate tasks with similar command structure
but different values. For example, the commands
“Order Iced Cappuccino” and “Order a sausage pizza”
invoke different scripts, because the phrase “Iced
Cappuccino” is among the alternative elements for an
operation in one script, while “cheese pizza” is among
the alternatives for a different script.

Planned Work
In the current version of SUGILITE, the verbal instruction
from the user is only given before the demonstration.
Then SUGILITE tries to generalize the script from the
demonstration by using the user’s verbal instruction as
the intention of the user. Even though this simple
approach works surprisingly well and can automatically
generalize the scripts for many tasks with minimal

additional user input [3], we want to go further and
allow the users to give verbal instructions in
conversations with the virtual agent and to perform
demonstrations simultaneously while speaking. As
future work, we wish to further explore how to better
leverage (1) the verbal commands (and the narrations)
given by the user; (2) the user’s demonstrated actions,
and (3) the screen contents shown on the user
interface to understand the user’s intentions and to
learn the user’s desired tasks [5].

In this workshop, we wish to discuss and gather
feedback on designing the conversational user
experience to address the following issues:

The Disambiguation / Data Description Problem
The data description problem is long-standing in PBD
[2,4]. When the user demonstrates clicking on a screen
item, it is difficult to determine what feature (e.g., text
label, id, screen location, child elements, etc.) should
be used for identifying which item to click on in future
executions of the script. In a pilot study, we asked the
users to narrate their actions while demonstrating. We
found that the narrations are often very helpful in
disambiguating the features (e.g., the users said things
like “click on the first item in the list”, “click on the
submit button”, “choose the option with the lowest
price”). We plan to design a conversational user
experience to allow the users to naturally narrate
during the demonstration, and map the user narrations
to each operation the users perform on the screen.

Procedure Editing
We would like to enable users to explicitly specify
different parameter values for an existing script by
speech. For example, the user should be able to give

Figure 2: The recording
confirmation popup of SUGILITE

commands like “Get my regular breakfast order, except
instead of iced coffee, I want hot coffee.” We wish to
explore how the conversation in the mixed-initiative
interface can be designed, leveraging the context of the
existing scripts and GUI elements.

Conditionals and Triggers
In a preliminary study, participants from Amazon
Mechanical Turk were asked to give example
commands that they would like a smartphone
intelligent personal assistant to perform. Many of their
commands involved triggers based on the activity of
the user. Some examples are: “If I’m driving, send an
auto-response for my incoming messages”, and
“Connect the wireless headphone if I’m running”. Many
such commands also include conditionals, for example:
“order a hot cappuccino if it is cold outside, otherwise
order an iced cappuccino”.

In some cases, the conditionals are implicit. For
example, for “what’s the winning team for the Steeler’s
game”, the agent should return the name of the first
team displayed on the interface if the score of the first
team is higher than the second team, or the second
team if the other way around.

We plan to investigate how the user would normally
describe conditionals and triggers in the PBD scripts in
a conversation through a further Mechanical Turk
study. We will then explore how we can design the
conversational interface to better support the end-user
programming of conditionals and triggers.

Error Handling
SUGILITE often encounters two types of errors in its
conversational interface: (1) errors in voice recognition

and (2) recognizing the words correctly, but not being
able to perform the task properly.

In light of the first type of error, we plan to enable
SUGILITE to detect crucial actions (actions that cannot
be undone), and ask users for confirmation before
executing. This will ensure no critical action will be
accidentally done in case of the misrecognition.

For the second type of error, currently when SUGILITE
cannot find a matched item on the screen to operate
on, it will pause and prompt the user to demonstrate
the next action using direct manipulation. For the
future, we plan to enable SUGILITE to ask questions like
“I don’t see ‘large’ in the size option, I see grande, tall,
etc., which one should I pick?” in the conversation so
the user can handle such errors by speech without
necessarily having to touch the phone.

References
1. Amos Azaria, Jayant Krishnamurthy, and Tom M.

Mitchell. 2016. Instructable intelligent personal
agent. In AAAI '16

2. Allen Cypher and Daniel Conrad Halbert. 1993.
Watch what I do: programming by demonstration.
MIT press.

3. Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. In CHI '17. Retrieved
from http://www.toby.li/sugilite_paper

4. Henry Lieberman. 2001. Your wish is my command:
Programming by example. Morgan Kaufmann.

5. Ming Sun, Yun-Nung Chen, and Alexander I.
Rudnicky. 2016. An Intelligent Assistant for High-
Level Task Understanding. In IUI '16

Figure 3: The Papa’s Picks menu
in the Papa John’s app

Acknowledgement:
This work was supported by
Yahoo! through CMU’s InMind
project.

Biography
Toby Jia-Jun Li (http://toby.li/) is a Ph.D. Student in
the Human-Computer Interaction Institute at Carnegie
Mellon University. His research interests include
intelligent user interfaces, end-user programming,
programming by demonstration and multi-modal
interaction. His most recent research focuses on
enabling end-users to teach intelligent agents new
tasks using a combination of verbal instructions and
demonstrations on user interfaces.

Brad A. Myers (http://www.cs.cmu.edu/~bam/) is a
Professor in the Human-Computer Interaction Institute
at Carnegie Mellon University. He will receive the CHI
Lifetime Research Award this year, and is an IEEE
Fellow, ACM Fellow, and member of the CHI Academy.
His research interests include user interfaces,
programming environments, programming by example,
visual programming, and interaction techniques.

Amos Azaria (http://azariaa.com/) is a Senior
Lecturer at Ariel University, Israel. His research
interests include Human-agent interaction, Instructable
Agents Machine Learning (Deep Learning), Natural
Language Processing, Deception Detection, Modeling
and Predicting Human behavior and Decision Making.

Igor Labutov is a postdoctoral associate at Carnegie
Mellon University working with Tom Mitchell. His
research focus is on building machine learning systems
that can learn from rich human input in the form of
natural language instruction and demonstration. Prior
to starting at CMU, Igor received his PhD from Cornell
University, where his focus was on developing machine
learning algorithms for problems in education.

Alex Rudnicky (http://www.cs.cmu.edu/~air/) is a
Research Professor at the Computer Science
Department in the School of Computer Science at
Carnegie Mellon University. His current interests center
on language-based communication between humans
and robots and on aspects of core speech recognition,
such as out-of-vocabulary (OOV) word processing. He
is also interested in approaches to learning based on
implicit supervision and on improvement of speech
system knowledge through dialog.

Tom M. Mitchell (http://www.cs.cmu.edu/~tom/) is a
Professor at the Carnegie Mellon University. His
research interests include Computer science, machine
learning, artificial intelligence, and cognitive
neuroscience. His research focuses on basic and applied
problems in machine learning, on understanding how
the human brain reads and represents the meaning of
language, and statistical learning algorithms for natural
language understanding by computer. He is a member
of the United States National Academy of Engineering,
a Fellow of the American Academy of Arts and
Sciences, a Fellow of the American Association for the
Advancement of Science and a Fellow of AAAI.

